20 research outputs found

    Automatic Retraction and Full Cycle Operation for a Class of Airborne Wind Energy Generators

    Full text link
    Airborne wind energy systems aim to harvest the power of winds blowing at altitudes higher than what conventional wind turbines reach. They employ a tethered flying structure, usually a wing, and exploit the aerodynamic lift to produce electrical power. In the case of ground-based systems, where the traction force on the tether is used to drive a generator on the ground, a two phase power cycle is carried out: one phase to produce power, where the tether is reeled out under high traction force, and a second phase where the tether is recoiled under minimal load. The problem of controlling a tethered wing in this second phase, the retraction phase, is addressed here, by proposing two possible control strategies. Theoretical analyses, numerical simulations, and experimental results are presented to show the performance of the two approaches. Finally, the experimental results of complete autonomous power generation cycles are reported and compared with first-principle models.Comment: This manuscript is a preprint of a paper submitted for possible publication on the IEEE Transactions on Control Systems Technology and is subject to IEEE Copyright. If accepted, the copy of record will be available at IEEEXplore library: http://ieeexplore.ieee.or

    Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results

    Full text link
    An approach to control tethered wings for airborne wind energy is proposed. A fixed length of the lines is considered, and the aim of the control system is to obtain figure-eight crosswind trajectories. The proposed technique is based on the notion of the wing's "velocity angle" and, in contrast with most existing approaches, it does not require a measurement of the wind speed or of the effective wind at the wing's location. Moreover, the proposed approach features few parameters, whose effects on the system's behavior are very intuitive, hence simplifying tuning procedures. A simplified model of the steering dynamics of the wing is derived from first-principle laws, compared with experimental data and used for the control design. The control algorithm is divided into a low-level loop for the velocity angle and a high-level guidance strategy to achieve the desired flight patterns. The robustness of the inner loop is verified analytically, and the overall control system is tested experimentally on a small-scale prototype, with varying wind conditions and using different wings.Comment: This manuscript is a preprint of a paper accepted for publication on the IEEE Transactions on Control Systems Technology and is subject to IEEE Copyright. The copy of record is available at IEEEXplore library: http://ieeexplore.ieee.org

    Efficient Interior Point Methods for Multistage Problems Arising in Receding Horizon Control

    Get PDF
    Receding horizon control requires the solution of an optimization problem at every sampling instant. We present efficient interior point methods tailored to convex multistage problems, a problem class which most relevant MPC problems with linear dynamics can be cast in, and specify important algorithmic details required for a high speed implementation with superior numerical stability. In particular, the presented approach allows for quadratic constraints, which is not sup- ported by existing fast MPC solvers. A categorization of widely used MPC problem formulations into classes of different complexity is given, and we show how the computational burden of certain quadratic or linear constraints can be decreased by a low rank matrix forward substitution scheme. Implementation details are provided that are crucial to obtain high speed solvers. We present extensive numerical studies for the proposed methods and compare our solver to three well-known solver packages, outperforming the fastest of these by a factor 2-5 in speed and 3-70 in code size. Moreover, our solver is shown to be very efficient for large problem sizes and for quadratically constrained QPs, extending the set of systems amenable to advanced MPC formulations on low-cost embedded hardware

    Real-time optimization and adaptation of the crosswind flight of tethered wings for airborne wind energy

    Get PDF
    Airborne wind energy systems aim to generate renewable energy by means of the aerodynamic lift produced by a wing tethered to the ground and controlled to fly crosswind paths. The problem of maximizing the average power developed by the generator, in presence of limited information on wind speed and direction, is considered. At constant tether speed operation, the power is related to the traction force generated by the wing. First, a study of the traction force is presented for a general path parametrization. In particular, the sensitivity of the traction force on the path parameters is analyzed. Then, the results of this analysis are exploited to design an algorithm to maximize the force, hence the power, in real-time. The algorithm uses only the measured traction force on the tether and it is able to adapt the system’s operation to maximize the average force with uncertain and time-varying wind. The influence of inaccurate sensor readings and turbulent wind are also discussed. The presented algorithm is not dependent on a specific hardware setup and can act as an extension of existing control structures. Both numerical simulations and experimental results are presented to highlight the effectiveness of the approach.
    corecore